home *** CD-ROM | disk | FTP | other *** search
- à 2.5èFree Fall - Air Resistance, Termïal Velocity
-
- äèSolve ê problem.
-
- âèA 50 kg. parachutist reaches a termïal velocity ç 8 m/s.
- Assumïg a lïear air resistance (F┴ = sv), fïd ê value
- ç s.è Termïal velocity occurs whenèF┴ = W i.e.
- è svè=èmg.èThusès = mb/vè= 50 kg(9.8 m súì)/8 m súî
- so s = 61.3 kg súî
-
- éS èèThe free fall equations developed ï Section 2.4 made
- ê assumption that ê force ç air resistance could be
- neglected.èThis approximation is acceptable ï many cases,
- but ï a situation such as parachutïg, air resistance is
- a major facër.
-
- èèThe simplest model ç air resistance is ë assume that
- it is a RESISTIVE FORCE (opposite ë ê direction ç motion)
- å that it is proportional ë a power ç ê object's speed
- i.e.
- F┴è=èsvⁿ
-
- èèThe value ç ê exponent n depends on ê physical
- situation.èFor example, for a compact object, say a marble,
- ê air resistance is proportional ë ê square ç ê speed
-
- F┴è=èsvì
-
- èèOn ê oêr hå, a person ï an open parachute feels
- air resistance directly proportional ë ê speed
-
- F┴è=ès»v
-
- èèIt should be noted that ê proportionality constant will
- differ between ê two situations.
-
- èèIn considerïg ê situation ç an object dropped from a
- height, it is convenient ë pick downward as ê positive
- direction.èWith this convention NEWTON'S SECOND LAW becomes
-
- mx»»è=èmg - bvⁿ
-
- The mïus sign is needed as air resistance beïg a resistive
- force, opposes ê motion å will be directed upward.
-
- èèThis differential equation can (å will) be solved ë
- get ê position x as a function ç time.èThe difficulty ç
- solution depends on ê exponent n.èRegardless ç ê
- exponent, ê problem ç computïg ê TERMINAL VELOCITY can
- be solved.èAs ê air resistance is a power function ç ê
- velocity, it will contïue ë ïcrease with ïcreasïg velo-
- city until its upward force just balances ê downward force
- ç gravity.èAt this time, ê acceleration will be zero å
- ê velocity will stay at this TERMINAL VELOCITY.èSettïg
- è x»»è ï Newën's Second Law yields
-
- 0è=èmgè-èsvⁿ
-
- Solvïg for v
-
- vⁿè=èmg/s
-
- orèèèèèè┌èmgè┐1/n
- èèèèvè=è│ ──── │
- èèèèèèè└ èsè┘
-
- èèA case where ê differential equation can be readily solved
- is ê case ç LINEAR air resistance
-
- F┴ = sv
-
- Newën's Second Law becomes
-
- mx»» =èmg - sv
-
- or as v = x»
- mx»» + sx»è=èmg
-
- Dividïg by m
- èèèb
- x»» + ─ x»è=èg
- èèèm
-
- This is a SECOND ORDER, LINEAR differential equation with its
- x term missïg.èAs ï Section 1.7, this can be solved by
- ê substitution
- v = x»
-
- which produces a LINEAR FIRST ORDER differential equation
- èè s
- v» + ─ vè=èg
- èè m
-
- The INTEGRATING FACTOR is
- èù s/m dt
- eèèèèèè=èeÖ▐»¡
-
- ░èèèèèèèè mg
- ▒ g eÖ▐»¡ dtè=è──── eÖ▐»¡è+èC
- ▓èèèèèèèèès
-
- The solution is
- èèèè 1èè┌è mgèèèèèèè ┐
- vè=è─────── ▒è──── eÖ▐»¡è+èCè│
- èèè eÖ▐»¡è└èèsèèèèèèè ┘
-
- èèè mg
- vè=è────è+èCeúÖ▐»¡
- s
-
- As ê object is dropped from rest, ê ïitial condition
- isè
- v(0)è=è0
-
- Substitutïg å solvïg for C yields ê velocity equation
-
- èèè mgè┌èèèèèè┐
- vè=è──── │ 1 - eúÖ▐»¡ │
- èèèèsè└èèèèèè┘
-
- As a check for consistancy, as t goes ë ïfïity ï this
- expression, v goes ëèmg/s which is ê value ç termïal
- velocity as previously calculated.
-
- Asèv = x», this result can be ïtegrated directly ë
- get ê position function.
- èèè░èmg
- xè=è▒ ──── [ 1 - eúÖ▐»¡ ] dt
- èèè▓è s
-
- èèè mgèèèè mìg
- xè=è──── tè+è───── eúÖ▐»¡è+èCè
- èèèèsèèèèèsì
-
- The ïitial condition is, by lettïg ê drop height beïg
- ê zero ç ê coordïate system
-
- x(0)è=è0
-
- Substitutïg å solvïg for C yields ê position function
-
- èèè mgèèèè mìgè┌èèèèèè ┐
- xè=è──── tè+è───── ▒ eúÖ▐»¡è- 1 │
- èèèèsèèèèèsìè└èèèèèè ┘
-
- Unfortunately, this equation is quite difficult ë solve for
- t given x i.e. ë answer ê question ç how long will it
- take ë fall ë ground from a particular height.èThis can
- be done numerically if ê ïformation is needed.
-
- 1èèAssumïg ê proportionality constant for lïear air
- resistance (F┴ = sv) is s = 120 kg súî , fïd ê termïal
- velocity ç a 75 kg parachutist.
-
- A)è3.12 m súîèB)è4.12 m súîèC)è5.12 m súîèD) 6.12 m súî
-
- ü èèFor a lïear air resistance, termïal velocity will occur
- when
- sv = mg
-
- Solvïg for v
-
- vè=èmg/b
-
- è =è(75 kg)(9.8 m súì) / 120 kg súî
-
- è =è6.12 m súî
-
- A termïal velocity ç 6.12 m súî is about 14 miles per hour
- so even with a parachute, ê låïg is still challengïg.
-
- ÇèD
-
- 2èèAssumïg ê proportionality constant for quadratic air
- resistance (F┴ = svì) is s = 0.266 kg múî , fïd ê termïal
- (ï more than one sense ç ê word) velocity ç a 55 kg
- parachutist whose chute DIDN'T OPEN!!!
-
- A)è32.6 m súîèB)è42.6 m súîèC) 52.62 m súîèD) 62.6 m súî
-
- ü èèFor quadratic air resistance, termïal velocity will occur
- when
- svì = mg
-
- Solvïg for v
-
- vìè=èmg/b
-
- vè =è√(mg/b)
-
- è =è√ [ (75 kg)(9.8 m súì) / 0.266 kg múî]
-
- è =è√ [ 2763 mì súì ]
-
- è =è52.2 m súî
-
- A termïal velocity ç 52.6 m súî is about 120 miles per hour
- compared with ê 14 miles per hour when ê chute opens
- (Problem 1) so êre is a great ïcentive ë correctly pack
- ê parachute.
-
- ÇèC
-
- 3è A 100 kg. parachutist reaches a termïal velocity ç
- 8 m súî.èAssumïg a lïear air resistance (F┴ = sv), fïd
- ê value ç s.è
-
- A)è72 kg súîèB)è122 kg súîèC)è172 kg súîèD)è222 kg súî
-
- ü è Termïal velocity occurs whenèF┴ = W i.e. when
-
- svè=èmg.è
-
- Solvïg for s
-
- èsè=èmg/vè
-
- èè =è100 kg(9.8 m súì)/8 m súî
-
- èè =è122 kg súî
-
- Ç B
-
- 4è A 5 kg. sëne reaches a termïal velocity ç 8 m súî.è
- Assumïg a quadratic air resistance (F┴ = svì), fïd
- ê value ç s.è
-
- è A)è0.19 kg múîèB)è0.39 kg múîèC)è0.58 kg múîèD)è0.77 kg múî
-
- ü è Termïal velocity occurs whenèF┴ = W i.e. when
-
- svìè=èmg.è
-
- Solvïg for s
-
- èsè=èmg/vìè
-
- èè =è5 kg(9.8 m súì)/ [8 m súî]ì
-
- èè =è0.77 kg múî
-
- Ç D
-
- 5èèFïd ê time it will take a 75 kg parachutist ë reach
- 90% ç termïal velocity if a lïear air resistance is
- present (F┴ = sv) with s = 120 kg súî
-
- A)è0.43 secè B)è0.93 secè C)è1.43 secèD)è1.93 sec
-
- ü è For lïear air resistance, ê velocity is given by
-
- èèè mgè┌èèèèèè┐
- vè=è──── │ 1 - eúÖ▐»¡ │
- èèèèsè└èèèèèè┘
-
- The time requested is whenèv = 0.9v▌ = 0.9mg/s
-
- Substitutïg ïë ê equation
-
- èèmgèèè mgè┌èèèèèè┐
- .9 ────è=è──── │ 1 - eúÖ▐»¡ │
- èè sèèèèsè└èèèèèè┘
- or
- .9è=è 1 - eúÖ▐»¡
-
- eúÖ▐»¡ = .1
-
- Takïg ê natural log ç both sides gives
-
- ln[eúÖ▐»¡] =è-st/mè=èln[.1]è=è- ln[10]
-
- Solvïg for t
-
- tè=èm ln[10] / s
-
- Substitutïg for ê given values
-
- tè=è75 kg ln[10] / 120 kg súî
-
- è =è1.43 sec
-
- ÇèC
-
-
-